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Abstract

The objective of this paper is identification and analysis of excitation regimes, when nonlinear effects are
pronouncedly developed in the stationary dynamics of an infinitely long uniform elastic plate under heavy
fluid loading. The method of multiple scales is applied and the solutions of the amplitude modulation
equations for two types of excitation are obtained in a closed analytical form. Results of the asymptotic
analysis reported in this paper highlight several aspects of the nonlinear dynamics of such a plate, which
have not previously been studied in detail. It is shown that for ‘weak’ excitation of a resonant wave the
stationary response is controlled by the structure-originated nonlinearity, whereas for ‘strong’ sub-
harmonic excitation the stationary response is controlled by the fluid-originated nonlinearity. In both these
cases, a dependence of the amplitudes of directly and indirectly excited resonant waves on the amplitude of
the driving force is determined.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The nonlinear dynamics of an elastic plate under heavy fluid loading is of considerable practical
concern both in ‘classical’ technical applications (for example, vibrations of naval structures in
water) and in ‘advanced’ applications (for example, dynamics of electro-statically driven micro-
see front matter r 2004 Elsevier Ltd. All rights reserved.
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electromechanical systems). Apart from this practical importance, analysis of forced resonant
response of such a plate is of fundamental interest from the viewpoint of the theory of nonlinear
dynamical systems.
This nonlinear problem has been studied in Refs. [1–6]. In Refs. [1–3], classical perturbation

methods are used to deal with the case of so-called ‘light fluid loading’ of a nonlinear structure. In
effect, this assumption implies that the resonant frequencies of a plate of finite dimensions are not
altered due to the presence of fluid loading, which is not realistic in the case of, say, vibration of a
steel plate in water. Vibration of an infinitely long plate with periodically spaced supports exposed
to heavy fluid loading is considered in Ref. [4], where the cubic structural ‘stretching due to
bending’ nonlinearity is considered together with the quadratic nonlinearity in the formulation of
the contact pressure and in the continuity condition. It is shown that the structural nonlinearity
controls the steady-state response in resonant excitation conditions (which are identified with
linear fluid loading effects taken into account), whereas in the case of sub-harmonic excitation the
‘fluid-generated’ nonlinearity becomes dominant. The same model is used to deal with nonlinear
vibrations of a baffled plate in Ref. [5]. Mean flow effects on the dynamics of a nonlinear plate
with heavy fluid loading are studied in Ref. [6]. In the latter reference, a model of an
incompressible fluid is used and the cubic nonlinear curvature of a plate is considered as well as
the ‘stretching due to bending’ nonlinearity.
The present paper is aimed to extend the methodology suggested in Ref. [4] to the case, when

‘stretching due to bending’ structural nonlinearity does not exist inasmuch an infinitely long plate
is not periodically supported, but this structure exhibits the nonlinear behaviour of another
physical origin. In contrast to Ref. [6], the analysis involves fluid’s compressibility in the absence
of a mean flow.
2. Problem formulation

In the present paper, the theory suggested in Refs. [4–6] is used in the case when a fluid-loaded
infinitely long plate does not have any periodic supports and is exposed to resonant excitation.
The plane problem formulation is explored (see Fig. 1). The plate has thickness h; Young’s
modulus E and density r: It is loaded by a static axial tensile stresses s (which gives a force
resultant of sh) and is exposed to fluid loading generated by an acoustic medium which occupies
Fig. 1. The geometry of the system.
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the lower half-space. The acoustical properties of this medium are sound speed cfl and density rfl:
The plate is driven by a distributed lateral harmonic force ~qðx; tÞ; which produces flexural
vibrations defined by the function ~wðx; tÞ:
The linear formulation of this classical problem in structural acoustics has been thoroughly

explored by many authors (see, for example, Refs. [7,8]). However, in certain excitation
conditions, which will be addressed in the paper, the behaviour of a driven plate may not be
adequately described by a linear theory of fluid–structure interaction and nonlinear effects should
be taken into account. As discussed in Ref. [4], there are several sources of nonlinearity, which are
brought to light in excitation conditions generating a resonant wave. The ‘structure-originated’
nonlinearity is generated by the ‘stretching due to bending’ effect and by the effect of nonlinear
curvature, which is produced by moderate amplitude of vibrations. As is known from the theory
of nonlinear vibrations of beams and plates of finite length, the former effect is more pronounced
than the latter. However, this ‘stretching due to bending’ effect exists in an infinitely long plate
only if the plate is periodically supported with immobile stiffeners. In an infinitely long plate
without these supports, the in-plane tension can be produced only by stresses s acting at infinity
(similar to the static uniform pre-stress considered in the theory of elasticity, e.g. in the theory of
fracture). Thus, vibrations of an infinitely long fluid-loaded plate without intermediate supports,
which are addressed in this paper, are governed by equation

Eh3

12ð1� n2Þ
q2

q ~x2

q2 ~w

q ~x2
1þ

q ~w
q ~x

� �2
" #�3=2

8<
:

9=
;� sh

q2 ~w

q ~x2
þ rh

q2 ~w

q~t2
¼ ~q þ ~p. (1)

The first term in this nonlinear equation, written in dimensional form, is related to the exact
formulation of the bending moment in terms of curvature ~r�1ð ~xÞ:

Mð ~xÞ ¼
Eh3

12ð1� n2Þ
~r�1ð ~xÞ ¼

Eh3

12ð1� n2Þ
q2 ~w
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" #�3=2

. (2)

All other terms on the left-hand side of Eq. (1) are linear. The second term describes the influence
of the axial tension s; which is independent of flexural deflection. The third term presents the
conventional formulation of the inertia of a plate.
A contact acoustic pressure ~p exerted at the surface of the plate also contains the nonlinear

components

~p ¼ �rfl
q ~j
q~t

þ
1

2

q ~j
q ~x
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þ
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2

q ~j
q~z

� �2
" #

. (3)

Eq. (3) presents the nonlinearity in the exact formulation of Bernoulli’s equation, which may be
referred to as ‘fluid-originated’ nonlinearity.
The linear wave equation holds for an acoustic medium (see discussion in Ref. [4]):

q2 ~j
q ~x2

þ
q2 ~j
q~z2

�
1

c2fl

q2 ~j

q~t2
¼ 0. (4)
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Finally, the following continuity condition is formulated at the surface of the plate, ~z ¼ 0:

q ~j
q~z

¼
q ~w
q~t

þ
q ~w
q ~x

q ~j
q ~x

. (5)

This equation is formulated at the deformed surface of the plate with first-order terms retained,
sin½arctanðq ~w=q ~xÞ� � q ~w=q ~x; cos½arctanðq ~w=q ~xÞ� � 1: Thus, formula (5) describes the nonlinearity
in fluid–structure coupling.
Formulation (1)–(5) of the problem of the dynamics of an infinitely long elastic plate under

heavy fluid loading contains three nonlinear components, identified as ‘structure-originated’
nonlinearity (2), ‘fluid-originated’ nonlinearity (3), and ‘coupling-originated’ nonlinearity (5). This
problem formulation differs from the earlier ones [4–6]. Unlike the case treated in Refs. [4,5], here
forced vibrations of an infinitely long homogeneous plate (i.e., a plate without periodic immobile
supports) are addressed. The compressibility of the fluid is taken into account, unlike in the
problem solved in Ref. [6].
In practice, it is not quite realistic to assume that the amplitude of stationary vibrations of a

fluid-loaded plate may be much larger than its thickness, even in the resonant excitation
conditions. So the finite but small amplitudes of displacements should be considered and the
nonlinear term in Eq. (1) may be expanded in polynomial series with sufficient accuracy if only
linear and cubic terms are retained, i.e.,

q2

q ~x2

q2 ~w

q ~x2
1þ

q ~w
q ~x

� �2
" #�3=2

8<
:

9=
; ¼

q4 ~w

q ~x4
�

3

2

q4 ~w

q ~x4

q ~w
q ~x

� �2

� 3
q2 ~w

q ~x2

� �3

� 9
q ~w
q ~x

q2 ~w

q ~x2

q3 ~w

q ~x3
. (6)

Therefore problem (1)–(5) is treated here as a weakly nonlinear problem, which facilitates use of
classical perturbation methods. Specifically, the method of multiple scales is applied as formulated
in Ref. [9]. Then the system of governing equations is written as
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þ
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�
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¼ 0, (9)

qj
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¼
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qt
þ m

qw

qx

qj
qx

ðz ¼ 0Þ. (10)

Here m is a formal small parameter (see Ref. [9]), dm is a Kronecker symbol and the non-
dimensional variables are introduced as ~w ¼ wh; ~j ¼ jch; ~x ¼ xh; ~z ¼ zh; ~t ¼ tðh=cÞ; c ¼

ffiffiffiffiffiffiffiffiffi
E=r

p
:
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The first term in right-hand side of Eq. (7) should read as m½ð12ð1� n2Þ ~qÞ=E� in the case, when
the excitation frequency and the excitation wavenumber satisfy the dispersion equation for a
linear fluid-loaded plate, i.e., at the resonant ‘weak’ excitation. This ranging of the amplitude of a
driving force simply means that small force is able to produce large-amplitude response.
Respectively, in the case, when the excitation frequency and the excitation wavenumber do not
satisfy this dispersion equation, a larger force should be applied to provoke the similar response.
These two different loading cases cast in Eq. (7) by means of parameter dm: The resonant ‘weak’
excitation is recovered at dm ¼ 1; the non-resonant ‘strong’ excitation is recovered at dm ¼ 0:
The lateral displacement of the plate, wðx; tÞ; the contact acoustic pressure pðx; z; tÞ and the

velocity potential in the fluid, jðx; z; tÞ; are sought in the form of regular asymptotic expansions in
the formal small parameter m and the first two terms are retained:

wðx; tÞ ¼ w0ðx0;T0; x1;T1Þ þ mw1ðx0;T0;x1;T1Þ, (11a)

pðx; z; tÞ ¼ p0ðx0; z0;T0; x1; z1;T1Þ þ mp1ðx0; z0;T0; x1; z1;T1Þ, (11b)

jðx; z; tÞ ¼ j0ðx0; z0;T0; x1; z1;T1Þ þ mj1ðx0; z0;T0; x1; z1;T1Þ. (11c)

Here the ‘fast’ and the ‘slow’ coordinates are x0 ¼ x; z0 ¼ z; T0 ¼ t; x1 ¼ mx; z1 ¼ mz; T1 ¼ mt:
The derivatives with respect to ‘physical’ variables are

q
qx

¼
q
qx0

þ m
q
qx1

;
q
qz

¼
q
qz0

þ m
q
qz1

;
q
qt

¼
q

qT0
þ m

q
qT1

.

Then the problem to leading order Oð1Þ is linear and is,
in the case of ‘weak’ excitation:

q4w0

qx4
0

�
12sð1� n2Þ

E

q2w0

qx2
0

þ 12ð1� n2Þ
q2w0

qT2
0

� 12ð1� n2Þp0 ¼ 0, (12a)

in the case of ‘strong’ excitation:

q4w0

qx4
0

�
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E
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þ 12ð1� n2Þ
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E
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p0 ¼ �
rfl
r

qj0

qT0
, (12c)

q2j0

qx2
0

þ
q2j0

qz20
�

c2

c2fl

q2j0

qT2
0

¼ 0, (12d)

qj0

qz0
¼

qw0

qT0
ðz0 ¼ 0Þ. (12e)

Eqs. (12c–e) are equally valid for the cases of ‘weak’ and ‘strong’ excitation. This problem is
formulated as a problem for a plate under heavy fluid loading inasmuch as the leading-order
equation (12a) or (12b) contains the coupling term �12ð1� n2Þp0: This system of equations in the
absence of any external forcing ( ~q ¼ 0) is solved in the companion paper [10]. The solution is
partly reproduced here in order to identify the resonant excitation regimes. The unknown
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functions are

w0ðx; tÞ ¼ W 01ðx1;T1Þ expðikx0 � ioT0Þ þ W 02ðx1;T1Þ expð�ikx0 � ioT0Þ

þ W 03ðx1;T1Þ expðikx0 þ ioT0Þ þ W 04ðx1;T1Þ expð�ikx0 þ ioT0Þ, ð13aÞ

j0ðx; z; tÞ ¼
ioh=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
q ½�A1ðz1; x1;T1Þ expðikx0 � ioT0Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

� ðoh=cflÞ
2

q
Þ. ð13bÞ

The dispersion equation is

k4
þ
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� �2

k2
�

oh

cL

� �2

�
rfl
r

oh

cL

� �2

k2
�

oh

cfl

� �2
" #�1=2

¼ 0. (14)

Here the following additional notation is used: cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð12ð1� n2ÞrÞ

p
; cM ¼

ffiffiffiffiffiffiffiffi
s=r

p
:

It is convenient to introduce the scaling

O ¼
oh=cL

ðcfl=cLÞ
2
; K ¼

kh

ðcfl=cLÞ
; d ¼ cM=cfl; � ¼ ðrfl=rÞ=ðcfl=cLÞ

and to re-write Eq. (14) as

K4 þ d2K2 � O2 �
�O2

ðK2 � O2Þ
1=2

¼ 0. (15)

The analysis of various regimes of wave motion in a fluid-loaded plate is performed in the
companion paper [10] and asymptotic expansions for all roots of this equation are obtained there
in terms of fluid loading parameter �: In particular, the purely real root of this dispersion equation
in the low-frequency regime is found to be

O ffi
K3=2ðK2 þ d2Þ1=2

ð�þ KÞ
1=2

�
�

4

K5=2ðK2 þ d2Þ3=2

ð�þ KÞ
5=2

. (16)

This formula defines several excitation regimes, which are controlled by nonlinear effects.
Specifically, the following two loading cases should be considered in detail:
1.
 ‘Weak’ excitation at the resonant frequency and the resonant wavenumber (those, which satisfy
linear dispersion equation (16)).
2.
 ‘Strong’ sub-resonant excitation.

It is appropriate to notice here that—although an infinitely long wave-guide is considered—it is
entirely relevant to identify the forced response of a linear system in the case, when the excitation
frequency and the excitation wavenumber satisfy the dispersion equation, as a resonant one
inasmuch the linear theory predicts the unbounded amplitude of forced vibrations.
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3. Asymptotic analysis of a steady-state response

To determine the dependence of the functions w0ðx0;T0;x1;T1Þ; p0ðx0; z0;T0; x1; z1;T1Þ and
j0ðx0; z0;T0; x1; z1;T1Þ on the ‘slow’ variables x1; z1; T1; it is necessary to address the first-order
problem. Its solution is different for the two regimes, which are identified in the previous section.
3.1. ‘Weak’ resonant excitation

Consider ‘weak’ resonant excitation (dm ¼ 1) of an infinitely long plate with heavy fluid loading
at frequency oq ¼ o and at wavenumber kq ¼ k: The frequency and wavenumber satisfy the
dispersion equation (14) and are easily found from Eq. (16) as oh=cL ¼ Oðcfl=cLÞ

2; kh ¼ Kðcfl=cLÞ:
To determine the dependence of the functions w0 and j0 on the ‘slow’ coordinates ðx1; z1;T1Þ in
formulae (13a,b), it is necessary to set up the problem to order OðmÞ:
The equation of structural dynamics to this order is
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þ
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E
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qx0qx1
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q2w0

qT0qT1
. ð17Þ

The contact pressure to order OðmÞ at the surface of a plate is defined as

p1 ¼ �
rfl
r

qj1

qT0
þ

qj0

qT1
þ
1

2

qj0

qx0

� �2

þ
qj0

qz0

� �2
( )" #

. (18)

The velocity potential is governed by the inhomogeneous wave equation,

q2j1

qx2
0

þ
q2j1

qz20
�

c2

c2fl

q2j1

qT2
0

¼ �2
q2j0

qx0qx1
� 2

q2j0

qz0qz1
þ 2

c2

c2fl

q2j0

qT0qT1
. (19)

Finally, the boundary condition to order OðmÞ is

qj1

qz0
þ

qj0

qz1
¼

qw1

qT0
þ

qw0

qT1
þ

qw0

qx0

qj0

qx0
. (20)

Problem (17)–(20) is linear for the functions w1ðx0;T0;x1;T1Þ; j1ðx0; z0;T0;x1; z1;T1Þ and is
formulated only in the ‘fast’ variables x0; z0; T0 with respect to these functions. Thus, its solution
may be sought by use of a superposition principle. Problem (17)–(20) also defines the dependence
of the functions w0ðx0;T0;x1;T1Þ and j0ðx0; z0;T0;x1; z1;T1Þ on ‘slow’ variables x1; z1; T1 via
solvability conditions, which should be formulated to ensure that the asymptotic expansions (11)
are uniformly valid. More precisely, right-hand sides of the differential equations (17) and (19)
with respect to the functions w1ðx0;T0; x1;T1Þ; j1ðx0; z0;T0;x1; z1;T1Þ should not contain secular
terms in the ‘fast’ variables x0; z0; T0:
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To identify secular terms, it is convenient to re-write Eq. (17) as

q4w1

qx4
0

�
12sð1� n2Þ

E
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þ 12ð1� n2Þ
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þ
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þ 12ð1� n2Þp11. ð21Þ

Here the contact acoustic pressure is decomposed as

p1ðx0; z0;T0;x1; z1;T1Þ ¼ p10 þ p11. (22a)

Respectively, the same decomposition is applied to the velocity potential:

j1ðx0; z0;T0;x1; z1;T1Þ ¼ j10 þ j11. (22b)

The first component in Eq. (22a) is defined exactly as its counterpart (12c):

p10 ¼ �
rfl
r

qj10

qT0
. (23)

The first component in Eq. (22b) is also defined exactly as in the problem to leading order by the
homogeneous wave equation in ‘fast’ variables:

q2j10

qx2
0

þ
q2j10

qz20
�

c2

c2fl

q2j10

qT2
0

¼ 0. (24)

The boundary condition for this equation is

qj10

qz0
¼

qw1

qT0
. (25)

The operator defined by the left-hand side of Eq. (21) is identical to the operator on the left-hand
side of Eq. (12a). Therefore, secular terms must be removed from the right-hand side of this
equation. These terms are present in Eq. (21) both explicitly and implicitly, i.e., they are contained
in the pressure p11: This component p11 and the component j11 are actually defined as the
‘residual’ from formulation (18)–(20)—with parts (23) and (25) removed:

p11 ¼ �
rfl
r

qj11

qT0
þ

qj0

qT1
þ

1

2

qj0

qx0
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þ
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, (26)
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0

þ
q2j11
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q2j11

qT2
0
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q2j0

qx0qx1
� 2

q2j0

qz0qz1
þ 2

c2

c2fl

q2j0

qT0qT1
, (27)

qj11

qz0
¼ �

qj0

qz1
þ

qw0

qT1
þ

qw0

qx0

qj0

qx0
. (28)
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Furthermore, it is possible (because of the linearity of this formulation with respect to the
functions p11 and j11) to write

p11 ¼ p
ð1Þ
11 þ p

ð2Þ
11 . (29)

Here the first component is defined directly via j0ðx0; z0;T0;x1; z1;T1Þ as

p
ð1Þ
11 ¼ �

rfl
r

qj0

qT1
�
1

2

qj0

qx0
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þ
qj0

qz0

� �2
( )" #

. (30)

The second component is

p
ð2Þ
11 ¼ �

rfl
r

qj11

qT0
. (31)

In this formula, the velocity potential j11 is a solution of the problem

q2j11

qx2
0

þ
q2j11

qz20
�

c2

c2fl

q2j11

qT2
0

¼ �2
q2j0

qx0qx1
� 2

q2j0

qz0qz1
þ 2

c2

c2fl

q2j0

qT0qT1
, (32a)

qj11

qz0
¼

qw0

qx0

qj0

qx0
ðz0 ¼ 0Þ. (32b)

Finally, the continuity condition for the functions j0ðx0; z0;T0;x1; z1;T1Þ and w0ðx0;T0;x1;T1Þ in
‘slow’ coordinates also follows from the continuity condition (28) when condition (32b) is
subtracted:

qj0

qz1
¼

qw0

qT1
ðz1 ¼ 0Þ. (33)

It does not present serious difficulties to formulate the solvability conditions for problem (21)–(33)
and therefore to find the dependence of the functions w0ðx0;T0;x1;T1Þ and j0ðx0; z0;T0;x1; z1;T1Þ

on the ‘slow’ variables x1; z1; T1: However, from a practical viewpoint it is important to obtain
only a stationary response, if it exists. This response implies that all derivatives in ‘slow’
coordinates vanish and the amplitude of vibrations of a plate is actually constant in ‘slow’
variables. Then the governing equation (21) is simplified to

q4w1

qx4
0

�
12sð1� n2Þ

E

q2w1

qx2
0

þ 12ð1� n2Þ
q2w1

qT2
0

� 12ð1� n2Þp10

¼
12ð1� n2Þ ~q

E
þ

3

2

q4w0

qx4
0

qw0

qx0

� �2

þ 3
q2w0

qx2
0

� �3

þ 9
qw0

qx0

q2w0

qx2
0

q3w0

qx3
0

þ 12ð1� n2Þp11. ð34Þ

In this equation,

p11 ¼ �
rfl
r

qj11

qT0
þ

1

2

qj0

qx0

� �2

þ
qj0

qz0

� �2
( )" #

, (35a)
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q2j11

qx2
0

þ
q2j11

qz20
�

c2

c2fl

q2j11

qT2
0

¼ 0, (35b)

qj11

qz0
¼

qw0

qx0

qj0

qx0
ðz0 ¼ 0Þ. (35c)

The leading order terms in expansions (11) are formulated as

w0ðx; tÞ ¼ W 01 expðikx0 � ioT0Þ þ W 02 expð�ikx0 � ioT0Þ

þ W 03 expðikx0 þ ioT0Þ þ W 04 expð�ikx0 þ ioT0Þ, ð36aÞ

j0ðx; z; tÞ ¼
ioh=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
� ðoh=cflÞ

2
q ½�W 01 expðikx0 � ioT0Þ

� W 02 expð�ikx0 � ioT0Þ þ W 03 expðikx0 þ ioT0Þ

þ W 04 expð�ikx0 þ ioT0Þ� expðz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

� ðoh=cflÞ
2

q
Þ. ð36bÞ

A resonant standing wave is generated when the driving load is

~q ¼
Q0

4
½expðikqx � ioqtÞ þ expð�ikqx � ioqtÞ

þ expðikqx þ ioqtÞ þ expð�ikqx þ ioqtÞ�. ð37Þ

As shown in Ref. [4], the fluid-introduced nonlinearity does not contribute to the modulation
equation in this case of ‘weak’ resonant excitation. The origin of the secular terms lies only in the
terms that describe the structural nonlinearity (namely, the nonlinear curvature) and a standard
algebra gives a set of the ‘amplitude modulation’ equations for a stationary response in this
loading case. With ~Q0 
 ð12ð1� n2ÞQ0Þ=E; these equations are

k6
½15W 01W 02W 03 þ

15
2

W 2
01W 04� ¼

1
4
~Q0, (38a)

k6
½15W 02W 03W 04 þ

15
2

W 2
04W 01� ¼

1
4
~Q0, (38b)

k6
½15W 01W 02W 04 þ

15
2 W 2

02W 03� ¼
1
4
~Q0, (38c)

k6
½15W 01W 03W 04 þ

15
2

W 2
03W 02� ¼

1
4
~Q0. (38d)

The solution is

W 01 ¼ W 02 ¼ W 03 ¼ W 04 ¼ W ¼ k�2
~Q0

90

� �1=3

. (39)

As seen from Eq. (39), the resonant growth in the amplitude is bounded by the presence of the
‘structural’ nonlinearity.
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3.2. ‘Strong’ sub-resonant excitation

Now the ‘strong’ excitation (dm ¼ 0) at frequency oq ¼ o=2 and wavenumber kq ¼ k=2 is
addressed. In this case, the ‘fluid-produced’ quadratic nonlinearity generates interaction between a
wave of the above parameters and a resonant wave. A stationary solution in ‘slow’ variables of the
problem to the order Oð1Þ is sought as

w0ðx; tÞ ¼ W 01 expðikx0 � ioT0Þ þ W 02 expð�ikx0 � ioT0Þ þ W 03 expðikx0 þ ioT0Þ

þ W 04 expð�ikx0 þ ioT0Þ þ W q1 exp
ikx0 � ioT0

2

� �
þ W q2 exp

�ikx0 � ioT0

2

� �

þ W q3 exp
ikx0 þ ioT0

2

� �
þ W q4 exp

�ikx0 þ ioT0

2

� �
, ð40aÞ

j0ðx; z; tÞ ¼ i
oh

c
k2

�
oh

cfl

� �2
" #�1=2

½�W 01 expðikx0 � ioT0Þ � W 02 expð�ikx0 � ioT0Þ

þ W 03 expðikx0 þ ioT0Þ þ W 04 expðikx0 þ ioT0Þ� exp z0 k2
�

oh

cfl

� �2
" #1=2

0
@

1
A

þ i
oh

c
k2

�
oh

cfl

� �2
" #�1=2

�W q1 exp
ikx0 � ioT0

2

� �
� W q2 exp

�ikx0 � ioT0

2

� ��

þ W q3 exp
ikx0 þ ioT0

2

� �
þ W q4 exp

�ikx0 þ ioT0

2

� ��

� exp
z0

2
k2

�
oh

cfl

� �2
" #1=2

0
@

1
A. ð40bÞ

The amplitude of the directly excited sub-resonant standing wave is found from the elementary
linear equation for W q1 ¼ W q2 ¼ W q3 ¼ W q4 ¼ W q:

W q

k

2

� �4

þ
cM

cL

� �2
k

2

� �2

�
oh

2cL

� �2

�
rfl
r

oh

2cL

� �2
k

2

� �2

�
oh

2cfl

� �2
" #�1=2

8<
:

9=
; ¼ 1

4
~Q0. (41)

Although the frequency o and the wavenumber k are found from the condition that the
expression in curly brackets—the dispersion function—vanishes for the pair ðo; kðoÞÞ; the pair
ðo=2; kðoÞ=2Þ does not satisfy this dispersion equation. The ‘amplitude modulation’ equations are

k6 15W 01W 02W 03 þ
15
2

W 2
01W 04 þ 3W 01W

2
q

h i

þ
1

8

rfl
r

oh

cL

� �2

1� 3k2 k2
�

oh

cfl

� �2
" #�1

8<
:

9=
;W 2

q ¼ 0,
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k6 15W 01W 02W 04 þ
15
2

W 2
02W 03 þ 3W 02W

2
q

h i

þ
1

8

rfl
r

oh

cL

� �2

1� 3k2 k2
�

oh

cfl

� �2
" #�1

8<
:

9=
;W 2

q ¼ 0,

k6 15W 01W 03W 04 þ
15
2

W 2
03W 02 þ 3W 03W

2
q

h i

þ
1

8

rfl
r

oh

cL

� �2

1� 3k2 k2
�

oh

cfl

� �2
" #�1

8<
:

9=
;W 2

q ¼ 0,

k6 15W 02W 03W 04 þ
15
2

W 2
04W 01 þ 3W 04W

2
q

h i

þ
1

8

rfl
r

oh

cL

� �2

1� 3k2 k2
�

oh

cfl

� �2
" #�1

8<
:

9=
;W 2

q ¼ 0. ð42Þ

In this case, the stationary solution is W 01 ¼ W 02 ¼ W 03 ¼ W 04 ¼ W 0; and the amplitude of the
resonant standing wave is found from the cubic equation

W 3
0 þ fW 2

qW 0 þ gW 2
q ¼ 0. (43)

The coefficients in this equation are

f ¼ 1=15; g ¼
1

180
k�6 rfl

r
oh

cL

� �2

1� 3k2 k2
�

oh

cfl

� �2
" #�1

8<
:

9=
;.

Although there is no difficulty in finding the roots of this equation by, e.g., the symbolic
manipulator Mathematica [11], its real root is elementarily defined in the form of an asymptotic
expansion in the small parameter W q (it is entirely realistic to assume that non-resonant
vibrations of a plate at frequency oq ¼ o=2 and wavenumber kq ¼ k=2 have a fairly small
amplitude W q51). The expansion is

W 0 ffi �g1=3W 2=3
q þ 1

3
fg�1=3W 4=3

q . (44)

The ratio of the resonant amplitude to the amplitude of the directly excited wave is

W 0=W q ffi �g1=3W�1=3
q þ 1

3
fg�1=3W 1=3

q . (45)

As the amplitude of a driving force tends to zero, both the directly excited non-resonant wave and
the resonant wave indirectly excited by nonlinear modal coupling have vanishing amplitudes (see
formulae (41) and (44)). However, this formula suggests that the smaller the amplitude of a
driving load, the larger the ratio between the amplitudes of these waves. The dependence of the
amplitudes W 0 (curve 1) and W q (curve 2) on the frequency parameter oh=cL is shown in Fig. 2a
for the non-dimensional excitation amplitude ~Q0 ¼ 1:0� 10�5: Vibrations of a steel plate in water
are considered, for which r ¼ 7:8� 103 kg=m3; E ¼ 2:1� 105MPa; n ¼ 0:3; rfl ¼ 1:0�
103 kg=m3; cfl ¼ 1:5� 103 m=s: The dimensional amplitude of a distributed load is Q0 ¼
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Fig. 2. Forced nonlinear response of a plate with fluid loading: (a) Amplitudes of the sub-harmonic and the resonant

waves. Curve 1—the amplitude of the sub-harmonic wave; curve 2—the amplitude of the resonant wave. (b) The

amplitude ratio W 0=W q at ~Q0 ¼ 1:0� 10�5 (curve 1), ~Q0 ¼ 3:3� 10�6 (curve 2), ~Q0 ¼ 1:0� 10�6 (curve 3).
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0:183MPa and the static axial pre-stress is s ¼ 21MPa: As seen from the graph, starting from
oh=cL � 0:135 (for a steel plate of thickness h ¼ 10mm; corresponding to a frequency of
f � 3:3 kHz), the indirectly excited resonant response (curve 2) becomes larger than the directly
excited sub-harmonic response of a fluid-loaded plate (curve 1). Both are fairly small—the
dimensional amplitudes at f � 3:3 kHz are Wdim

0 ¼ Wdim
q ¼ 0:075h ¼ 0:75mm: The amplitude

ratio W 0=W q versus the frequency parameter oh=cL is shown inFig. 2b. As seen, the weaker the
excitation of the sub-harmonic wave, the larger the amplitude ratio W 0=W q:
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4. Conclusions

The stationary nonlinear dynamics of an infinitely long uniform elastic plate under heavy fluid
loading has been analysed by the method of multiple scales. The excitation regimes, when
nonlinear modal interaction effects are pronouncedly developed, are identified and studied. In the
case of weak resonant excitation, the stationary response is controlled by the structure-originated
nonlinearity, and the steady-state amplitude of the standing flexural wave is proportional to the
cube root of the excitation force. In the case of strong sub-harmonic excitation, the stationary
response is controlled by the fluid-originated nonlinearity, and the resonant wave excited by the
nonlinear modal coupling may have larger amplitude than a directly excited non-resonant wave.
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